Thursday 9 March 2017

Plasmid-

Plasmid is a genetic structure in a cell that can replicate independently of the
chromosomes, typically a small circular DNA strand in the cytoplasm of a bacterium or protozoan. They are most commonly found in bacteria as small circular, double-stranded DNA molecules; however, plasmids are sometimes present in archaea and eukaryotic organisms. In nature, plasmids often carry genes that may benefit the survival of the organism, for example antibiotic resistance.
While the chromosomes are big and contain all the essential genetic information for living under normal conditions, plasmids usually are very small and contain only additional genes that may be useful to the organism under certain situations or particular conditions. Artificial plasmids are widely used as vectors in molecular cloning, serving to drive the replication of recombinant DNA sequences within host organisms.
Plasmids are considered replicons, a unit of DNA capable of replicating autonomously within a suitable host. However, plasmids, like viruses, are not generally classified as life. Plasmids can be transmitted from one bacterium to another (even of another species) via three main mechanisms: transformation, transduction, and conjugation. This host-to-host transfer of genetic material is called horizontal gene transfer, and plasmids can be considered part of the mobilome. Unlike viruses (which encase their genetic material in a protective protein coat called a capsid), plasmids are "naked" DNA and do not encode genes necessary to encase the genetic material for transfer to a new host. However, some classes of plasmids encode the conjugative "sex" pilus necessary for their own transfer. The size of the plasmid varies from 1 to over 200 kbp, and the number of identical plasmids in a single cell can range anywhere from one to thousands under some circumstances.

Characteristics of plasmid-
The American molecular biologist Joshua Lederberg first introduced the term plasmid in 1952 - originally to describe any bacterial genetic material that exists in an extra-chromosomal state for at least part of its replication cycle. Later in 1968, it was decided that the term plasmid should be adopted as the term for extra-chromosomal genetic element, and to distinguish it from viruses, the definition was narrowed to genetic elements that exist exclusively or predominantly outside of the chromosome and can replicate autonomously.
In order for plasmids to replicate independently within a cell, they must possess a


stretch of DNA that can act as an origin of replication. The self-replicating unit, in this case the plasmid, is called a replicon. A typical bacterial replicon may consist of a number of elements, such as the gene for plasmid-specific replication initiation protein (Rep), repeating units called iterons, DnaA boxes, and an adjacent AT-rich region. Smaller plasmids make use of the host replicative enzymes to make copies of themselves, while larger plasmids may carry genes specific for the replication of those plasmids. A few types of plasmids can also insert into the host chromosome, and these integrative plasmids are sometimes referred to as episomes in prokaryotes.
Plasmids are generally carrying at least one gene. Many of the genes carried by a plasmid are beneficial for the host cells, for example: enabling the host cell to survive in an environment that would otherwise be lethal or restrictive for growth. Some of these genes encode traits for antibiotic resistance or resistance to heavy metal, while others may produce virulence factors that enable a bacterium to colonize a host and overcome its defenses, or have specific metabolic functions that allow the bacterium to utilize a particular nutrient, including the ability to degrade recalcitrant or toxic organic compounds. Plasmids can also provide bacteria with the ability to fix nitrogen. Some plasmids, however, have no observable effect on the phenotype of the host cell or its benefit to the host cells cannot be determined, and these plasmids are called cryptic plasmids.
Naturally occurring plasmids vary greatly in their physical properties. Their size can range from very small mini-plasmids of less than a 1 kilobase pairs (Kbp), to very large megaplasmids of several megabase pairs (Mbp). At the upper end, little can differentiate between a megaplasmid and a minichromosome. Plasmids are generally circular, however examples of linear plasmids are also known. These linear plasmids require specialized mechanisms to replicate their ends.
Plasmids may be present in an individual cell in varying number, ranging from one to several hundreds. The normal number of copies of plasmid that may be found in a single cell is called the copy number, and is determined by how the replication initiation is regulated and the size of the molecule. Larger plasmids tend to have lower copy numbers. Low-copy-number plasmids that exist only as one or a few copies in each bacterium are, upon cell division, in danger of being lost in one of the segregating bacteria. Such single-copy plasmids have systems that attempt to actively distribute a copy to both daughter cells. These systems, which include the parABS system and parMRC system, are often referred to as the partition system or partition function of a plasmid.
Classification and types
Plasmids may be classified in a number of ways. Plasmids can be broadly classified into conjugative plasmids and non-conjugative plasmids. Conjugative plasmids contain a set of transfer or tra genes which promote sexual conjugation between different cells. In the complex process of conjugation, plasmid may be transferred from one bacterium to another via sex pili encoded by some of the tra genes (see figure). Non-conjugative plasmids are incapable of initiating conjugation; hence they can be transferred only with the assistance of conjugative plasmids. An intermediate class of plasmids is mobilizable, and carries only a subset of the genes required for transfer. They can parasitize a conjugative plasmid, transferring at high frequency only in its presence.
Plasmids can also be classified into incompatibility groups. A microbe can harbour different types of plasmids; however, different plasmids can only exist in a single bacterial cell if they are compatible. If two plasmids are not compatible, one or the other will be rapidly lost from the cell. Different plasmids may therefore be assigned to different
incompatibility groups depending on whether they can coexist together. Incompatible plasmids normally share the same replication or partition mechanisms.
Another way to classify plasmids is by function. There are five main classes:
·         Fertility F-plasmids, which contain tra genes. They are capable of conjugation and result in the expression of sex pili.
·         Resistance (R) plasmids, which contain genes that provide resistance against antibiotics or poisons. Historically known as R-factors, before the nature of plasmids was understood.
·         Col plasmids, which contain genes that code for bacteriocinsproteins that can kill other bacteria.
·         Degradative plasmids, which enable the digestion of unusual substances, e.g. toluene and salicylic acid.
·         Virulence plasmids, which turn the bacterium into a pathogen.
Plasmids can belong to more than one of these functional groups.

Plasmid maintenance
Some plasmids or microbial hosts include an addiction system or postsegregational killing system (PSK), such as the hok/sok (host killing/suppressor of killing) system of plasmid R1 in Escherichia coli. This variant produces both a long-lived poison and a short-lived antidote. Several types of plasmid addiction systems (toxin/ antitoxin, metabolism-based, ORT systems) were described in the literature and used in biotechnical (fermentation) or biomedical (vaccine therapy) applications. Daughter cells that retain a copy of the plasmid survive, while a daughter cell that fails to inherit the plasmid dies or suffers a reduced growth-rate because of the lingering poison from the parent cell. Finally, the overall productivity could be enhanced.
In contrast, virtually all biotechnologically used plasmids (such as pUC18, pBR322 and derived vectors) do not contain toxin-antitoxin addiction systems and thus need to be kept under antibiotic pressure to avoid plasmid loss.
Yeast Plasmid-
Yeast are organisms that naturally harbour plasmids. Notable plasmids are 2 µm plasmids - small circular plasmids often used for genetic engineering of yeast, and linear pGKL plasmids from Kluyveromyces lactis, that are responsible for killer phenotypes.
Other types of plasmids are often related to yeast cloning vectors that include:
·         Yeast integrative plasmid (YIp), yeast vectors that rely on integration into the host chromosome for survival and replication, and are usually used when studying the functionality of a solo gene or when the gene is toxic. Also connected with the gene URA3, that codes an enzyme related to the biosynthesis of pyrimidine nucleotides (T, C);
·         Yeast Replicative Plasmid (YRp), which transport a sequence of chromosomal DNA that includes an origin of replication. These plasmids are less stable, as they can get lost during the budding.

Plasmid DNA extraction-
As alluded to above, plasmids are often used to purify a specific sequence, since they can easily be purified away from the rest of the genome. For their use as vectors and for molecular cloning, plasmids often need to be isolated.
There are several methods to isolate plasmid DNA from bacteria, the archetypes of which are the miniprep and the maxiprep/bulkprep. The former can be used to quickly find out whether the plasmid is correct in any of several bacterial clones. The yield is a small amount of impure plasmid DNA, which is sufficient for analysis by restriction digest and for some cloning techniques.
In the latter, much larger volumes of bacterial suspension are grown from which a maxi-prep can be performed. In essence, this is a scaled-up miniprep followed by additional purification. This results in relatively large amounts (several hundreds micrograms) of very pure plasmid DNA.
In recent times, many commercial kits have been created to perform plasmid extraction at various scales, purity, and levels of automation. Commercial services can prepare plasmid DNA at quoted prices below $300/mg in milligram quantities and $15/mg in gram quantitie.

Conformations-
Plasmid DNA may appear in one of five conformations, which (for a given size) run at different speeds in a gel during electrophoresis. The conformations are listed below in order of electrophoretic mobility (speed for a given applied voltage) from slowest to fastest:
·         Nicked open-circular DNA has one strand cut.
·         Relaxed circular DNA is fully intact with both strands uncut, but has been enzymatically relaxed (supercoils removed). This can be modeled by letting a twisted extension cord unwind and relax and then plugging it into itself.
·         Linear DNA has free ends, either because both strands have been cut or because the DNA was linear in vivo. This can be modeled with an electrical extension cord that is not plugged into itself.
·         Supercoiled (or covalently closed-circular) DNA is fully intact with both strands uncut, and with an integral twist, resulting in a compact form. This can be modeled by twisting an extension cord and then plugging it into itself.
·         Supercoiled denatured DNA is like supercoiled DNA, but has unpaired regions that make it slightly less compact; this can result from excessive alkalinity during plasmid preparation.
The rate of migration for small linear fragments is directly proportional to the voltage applied at low voltages. At higher voltages, larger fragments migrate at continuously increasing yet different rates. Thus, the resolution of a gel decreases with increased voltage.
At a specified, low voltage, the migration rate of small linear DNA fragments is a function of their length. Large linear fragments (over 20 kb or so) migrate at a certain fixed rate regardless of length. This is because the molecules 'resperate', with the bulk of the molecule following the leading end through the gel matrix. Restriction digests are frequently used to analyse purified plasmids. These enzymes specifically break the DNA at certain short sequences. The resulting linear fragments form 'bands' after gel electrophoresis. It is possible to purify certain fragments by cutting the bands out of the gel and dissolving the gel to release the DNA fragments.
Because of its tight conformation, supercoiled DNA migrates faster through a gel than linear or open-circular DNA.




No comments:

Post a Comment